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Spatiotemporal intermittency and scaling laws in inhomogeneous coupled map lattices
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We study the phenomenon of intermittency in an inhomogeneous lattice of coupled maps where the inho-
mogeneity appears in the form of different values of the map parameter at adjacent sites. This system exhibits
spatiotemporal intermittency as well as purely spatial intermittency accompanied by temporal periodicity in
different regions of the parameter space. Both types of intermittency appear as a result of bifurcations of
codimension two in such systems. We identify the types of bifurcations that are seen. The intermittency near
the bifurcation points and lines is associated with power-law distributions for the laminar lengths. The scaling
laws for the laminar length distributions are obtained. Two distinct types of scaling behavior characterized by
power laws with exponents that fall in two distinct ranges can be seen in the neighborhood of codimension-two
bifurcation points. Additionally we find two crossover exponents.

DOI: 10.1103/PhysRevE.66.036210 PACS number~s!: 05.45.2a
a
t

ls
e

-

g

m
n
e
l
ra
b
ur
he

t
it

lo
ra
o
ic
on
rm
es

t
f
al

ed
s

in-
o.
se
ral
-
the
ch
it-
e

ows
ior
inct
r to
hose
o in

ar
ed
b-
ns

pa-
dis-

w
in
in

hat
p
r-
I. INTRODUCTION

The phenomenon of spatiotemporal intermittency h
been observed in a wide range of extended systems in
laboratory as well as in a variety of theoretical mode
Spatio-temporal intermittent behavior has been seen in th
retical models such as coupled map lattices@1–6#, partial
differential equations@7,8#, as well as in experimental sys
tems such as chemical reactions@9#, Rayleigh-Benard con-
vection in narrow channels and annuli@10,11#, planar Cou-
ette flow @12#, studies of fluid flows between rotatin
eccentric cylinders such as the Taylor-Dean@13# and Taylor-
Couette@14,15# flows, and the ‘‘printer’s instability’’@16#. A
variety of scaling laws have been observed in these syste
However, there are no definite conclusions about their u
versal behavior. Many of the observed phenomena have b
seen in experimental systems where no simple mode
available. It is therefore important to study spatiotempo
intermittency in simple model systems which are amena
to theoretical and numerical analysis. Again, the conject
that the transition to spatiotemporal intermittency falls in t
same universality class as directed percolation@17# has been
the central issue in a long debate in the literature@3,4,18,19#.
Model studies can provide important pointers in this deba

We study the phenomenon of spatiotemporal interm
tency in an inhomogeneous lattice of diffusively coupled
gistic maps. We shall take our definition of spatiotempo
intermittency to be a region where a fluctuating mixture
regular and turbulent regions is seen and scaling laws ind
tive of long-range correlations are found in the distributi
of laminar lengths. The inhomogeneity appears in the fo
of different values for the map parameter at distinct sit
Such inhomogeneous lattices have been considered in
case of pinning studies@20# and in the context of control o
spatiotemporal chaos@21#. Our model shows spatiotempor
intermittency in the vicinity of bifurcations@22# of codimen-
sion one and codimension two.

In the case of bifurcations from the synchronised fix
point, we find the bifurcation curves by local analysis. The
1063-651X/2002/66~3!/036210~10!/$20.00 66 0362
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curves intersect at various points in the parameter space
dicating the existence of bifurcations of codimension tw
Spatiotemporal intermittency is seen in the vicinity of the
points. ~See Fig. 1 for space-time plots of spatiotempo
intermittency.! A temporally periodic structure with long
range correlations appears in the neighborhood of
codimension-two tangent-period doubling bifurcation whi
undergoes a further bifurcation to spatiotemporal interm
tency @23#. The distribution of laminar lengths seen in th
case of both spatial and spatiotemporal intermittency sh
power-law behavior. Four distinct types of scaling behav
are seen. Two of the exponents correspond to two dist
types of behavior. In addition, two exponents that appea
be crossover exponents are seen. Exponents similar to t
observed by us are seen in several experiments and als
other models.

We define the model in Sec. II, and also carry out line
stability analysis for bifurcations from the synchronised fix
point. The plot of bifurcation lines in parameter space o
tained from this analysis provides a good indicator of regio
where spatiotemporal intermittency can be found in the
rameter space and is discussed in the same section. The
tribution of laminar lengths in the intermittent regions follo
power-law scaling behavior. This behavior is discussed
Sec. III. Our results and their implications are discussed
Sec. IV.

II. THE MODEL AND LOCAL ANALYSIS

We consider a lattice of coupled logistic maps such t
maps at even lattice sites 2i have a given value of the ma
parameter, saym, and maps at odd lattice sites have a diffe
ent value of the map parameter, saym8. Our model is de-
fined by the evolution equations

x2i
t115~12e! f m~x2i

t !1
e

2
@ f m8~x2i 21

t !,1 f m8~x2i 11
t !#,

~1!
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FIG. 1. Space-time plot of a lattice of 2000 sites iterated for 100 iterates at the parameter valuesg51.99, e50.48 ~i.e., in the
neighborhood of the tangent-period-doubling pointC). A transient of 20 000 iterates has been discarded.~b! Space-time plot of a lattice o
2000 sites iterated for 100 iterates at the parameter valuesg50.66, e50.39 ~i.e., in the neighborhood of the tangent-period-doubling po
F). A transient of 20 000 iterates has been discarded.~c! Space-time plot of a lattice of 200 sites iterated for 25 iterates at the param
valuesg50.66, e50.39~i.e., in the neighborhood of the tangent-period-doubling pointF). A transient of 5000 iterates has been discard
ne

xed

ro-
where f m(x)5mx(12x) is the logistic map andm, m8e
@0,4#, x2i

t is the value of the variablex at the even lattice site
2i at time t, and 0<x<1. In the case ofx2i 11, the variable
defined at odd lattice sites, the evolution equation is defi
by the evolution above with 2i being replaced by 2i 11 and
m andm8 interchanged. We setm85m2g and use periodic
03621
d

boundary conditions with 2N, the number of lattice sites
being even. It can be easily seen that the synchronized fi
points of the system are given byx* 50 andx* 5(m2ge
21)/(m2ge).

Expanding the evolution equations about the synch
nized fixed point, the linear stability matrix has the form
0-2
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J53
~12e! f m8 ~x!

e

2
f m8
8 ~x! 0 0 . . . 0

e

2
f m8
8 ~x!

e

2
f m8 ~x! ~12e! f m8

8 ~x!
e

2
f m8 ~x! 0 . . . 0 0

0
e

2
f m8
8 ~x! ~12e! f m8 ~x!

e

2
f m8
8 ~x! . . . 0 0

0 0
e

2
f m8
8 ~x! ~12e! f m8 ~x! . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . . . . . . . ~12e! f m8 ~x!
e

2
f m8
8 ~x!

e

2
f m8 ~x! 0 . . . . . . . . .

e

2
f m8 ~x! ~12e! f m8

8 ~x!

4 , ~2!

wherex5x* . It is clear that this matrix is of the block circulant form. Therefore, one can carry out similarity transforma
by which it can be put in a block diagonal form@24,25#. This similarity transformation can be achieved by the matrixF2N
5FN^ I 2. HereFN is a Fourier matrix of sizeN3N @26# and I 2 is an identity matrix of size 232. The block diagonal form
is given by

J85S M ~u1! 0 0 ••• 0

0 M ~u2! 0 0 •••

A A A A A

A A M ~u l ! A A

A A A A A

0 0 0 M ~uN21! 0

0 0 0 0 M ~uN!

D , ~3!

where each block,M (u l) is a 232 matrix of the form

M ~u l !5F ~12e! f m8 ~x!
e

2
~11eiu l ! f m8

8 ~x!

e

2
~11e2 iu l ! f m8 ~x! ~12e! f m8

8 ~x!
G , ~4!

where,u l5@2p( l 21)#/N, l 51, . . . ,N.
The eigenvalues of this matrix as a function ofu l are given by

l~u l !5
~12e!~ f m8 1 f m8

8 !6$~12e!2~ f m8 2 f m8
8 !212e2~ f m8 f m8

8 !@11cos~u l !#%
1/2

2
. ~5!

Since the eigenvalues of the system lie betweenl(0) andl(p) @25# the bifurcations from the two synchronized fixe
points can be obtained by looking at the conditions at which these eigenvalues cross the unit circle. If we fixm54, these
conditions define a set of curves in the two parametere-g space. Codimension-one bifurcations can take place at param
values along these curves. These curves intersect in several places where the equations are simultaneously satisfie
intersections two eigendirections become unstable, resulting in bifurcations of codimension two.

Thus, we need to consider the eigenvalues

l6~0!5
~12e!~ f m8 1 f m8

8 !6@~12e!2~ f m8 2 f m8
8 !214e2~ f m8 f m8

8 !#1/2

2
~6!
036210-3
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TABLE I. We list the equations of the bifurcation lines plotted in Fig. 1 for bifurcations from the synchronized solutions in the-g
parameter space. We list the label of the bifurcation line, the equation of the bifurcation curve, the type of bifurcation that takes p
the fixed point from which the solution bifurcates in the table. Herex1* 50 andx2* 5(m2ge21)/(m2ge). The abbreviation PD refers to
a period-doubling bifurcation.

Line number Equation of line Type Fixed point

1 e5
5g225

9g240
PD x1*

2 e5
32g

42g
Tangent x1*

3 e5
3

4
Tangent x1*

4 e5
3g29

7g224
Tangent x1*

5 e5
2~82g21g!

2g~g24!
1

@~82g21g!228g~g22!~g24!#1/2

2g~g24!
PD x2*

6 e5
~3g18!2@~3g18!2264g#1/2

8g
PD x2*

7
ge22

42ge
5

@~12e!~82g!1$~12e!2~82g!224~122e!~1624g!%1/2#

2~122e!~1624g!
Tangent x2*

8
ge22

42ge
5

@~12e!~82g!2$~12e!2~82g!224~122e!~1624g!%1/2#

2~122e!~1624g!
Tangent x2*

9
ge22

42ge
5

@2~12e!~82g!1$~12e!2~82g!224~122e!~1624g!%1/2#

2~122e!~1624g!
PD x2*

10
ge22

42ge
5

@2~12e!~82g!2$~12e!2~82g!224~122e!~1624g!%1/2#

2~122e!~1624g!
PD x2*
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l6~p!5
~12e!~ f m8 1 f m8

8 !6~12e!~ f m8 2 f m8
8 !

2
, ~7!

wheref m8 5 f m8 (x* )5m(122x* ), andx* is the synchronized
fixed point. Consider the parameter regimem54, 0<e
<1, 0<g<4. All the eigenvalues are real in this parame
regime and cross the unit circle on the real axis at61 lead-
ing to tangent and period-doubling bifurcations@27#. The
equations for the bifurcation curves in thee-g space ob-
tained by imposing these bifurcation conditions are listed
Table I.

A rich variety of spatiotemporal behavior can be seen
the neighborhood of the bifurcation curves. We concentr
on regions that exhibit spatiotemporal intermittency wher
fluctuating mixture of regular and irregular domains can
seen. Spatiotemporally intermittent solutions are possibl
many places in the parameter space, particularly in the ne
borhood of the bifurcation curves and the vicinity of th
03621
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n
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codimension-two points as can be seen from Table II.
addition to the phenomenon of spatiotemporal intermitten
seen near these points, the inhomogeneous lattice has re
in parameter space where pure spatial intermittency acc
panied by temporally periodic behavior can be seen, i.e.,
temporal behavior is periodic, but spatially laminar and t
bulent regions co-exist at any point in time. This pheno
enon has been discussed elsewhere@23#.

We plot the bifurcation curves for bifurcations from th
synchronized fixed points in thee-g space where 0<e<1
and 0<g<4 in Fig. 2. The table indicates the type of bifu
cation that takes place along each curve. Sincem54 all the
eigenvalues are real and tangent and period doubling b
cations are seen where the eigenvalues cross the unit c
along the real axis. The bifurcation curve 1 is a perio
doubling bifurcation from the fixed pointx* 50.0 and the
curves 2, 3, and 4 are tangent bifurcation curves from
same fixed point. Curves 5, 6, 9, and 10 are period-doub
bifurcations from the other fixed pointx* 5(m2ge
21)/(m2ge), whereas curves 7 and 8 are tangent bifur
0-4
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SPATIOTEMPORAL INTERMITTENCY AND SCALING . . . PHYSICAL REVIEW E66, 036210 ~2002!
TABLE II. We list the codimension-two points where bifurcation lines from the synchronized fixed p
intersect. Label 1 corresponds to a bifurcation from the fixed pointx1* 50 and label 2 to those from the fixe
point x2* 5(m2ge21)/(m2ge). The type of bifurcation involved and the manner in which the eigenva
crosses unit circle and the power-law exponentP( l )' l z i are listed. The parameter values listed are the val
at which the spatiotemporal intermittency with the listed exponent is seen. This point is in the neighbo
of the codimension-two point of column one. The range of the exponentz1 is 1.9–2.2,z2 lies in the range
1.5–1.75, andz3 in the range 0.9–1.15. We also identify the nature of the intermittency, whether spat
spatiotemporal~ST!. We note that the spatial intermittency near pointE ~see *) is a mixture of tempora
periods.

Codimension-two points Exponent Parameter region Eigenvalue Type Natu

A z1 g51.18,e50.63 1,21 T1-PD1 Spatial
B g51.6,e50.66 21,21 PD1-PD2 Transient
C z1 g51.99,e50.48 1,21 T1-PD2 Spatial
D z1 g52.6,e50.969 11,21 T2-PD2 Spatial
E z1 g52.5,e5.35 1,21 T1-PD2 Spatial*
F zF g50.66,e50.39 1,21 T1-PD2 STI
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tions from this point. These bifurcation lines intersect at va
ous points in the parameter space indicating the existenc
codimension two bifurcations. Spatiotemporal intermitten
is seen in the neighborhood of several of these codimens
two points. These are indicated by the lettersA–F in Fig. 2.
We note that pointsA and D are points which lie on the
intersection of tangent and period-doubling lines 2 and
wherex* 50.0 goes unstable and lines 8 and 10 where
fixed pointx* 5(m2ge21)/(m2ge) goes unstable. Thes
two points show the phenomenon of pure spatial interm
tency which has been discussed in detail elsewhere@23#. The
point B where the two period doubling lines 1 and 9 corr
sponding, respectively, to the pointsx* 50.0 andx* 5(m
2ge21)/(m2ge) intersect is a period-doubling, period
doubling point. The spatiotemporal intermittency seen her
a transient phenomenon. The tangent line 2 from the fi
point x* 50 intersects with the period-doubling line 9 fro
x* 5(m2ge21)/(m2ge) at the codimension pointC
whereas it intersects with the line 6 from the same fix
point at the codimension-two pointE. Lines 4 and 5, which

FIG. 2. We plot the bifurcation lines in parameter space
bifurcations from the two fixed pointsx* 50 and x* 5(m2ge
21)/(m2ge) for 0.01<g<4.0, 0<e<1. The equations of the
bifurcation lines can be found in Table I.
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correspond to a tangent bifurcation fromx* 50.0 and a
period-doubling bifurcation from x* 5(m2ge21)/(m
2ge) intersect at pointF. The space-time plots of the spa
tiotemporal behavior at pointsC andF can be seen in Figs
1~a!–1~c!. We note that all the codimension-two poin
where spatiotemporal intermittency is seen are tang
period–doubling points, as the phenomenon near the per
doubling-period-doubling pointB disappears after a tran
sient.

The space-time plot of Fig. 1~c! ~i.e., pointF) looks quite
different from the space time plots seen in Fig. 1~a!. We also
note that there are several codimension-two points where
spatiotemporal intermittency is seen in the neighborho
Notably, the intersections of line 3 with other lines show
spatiotemporal intermittency and intersections that co
spond tog values greater than 3 do not show any interm
tent behavior in their neighborhood.

The plot of bifurcation curves in parameter space provid
a good indicator of the regions where spatiotemporal in
mittency can be seen. However, bifurcations from higher
riod solutions can give rise to further structure in this para
eter space and regions where spatiotemporal intermitte
can be seen may be more extensive than that predicte
this phase diagram.

III. SCALING LAWS FOR SPATIOTEMPORAL
INTERMITTENCY

The behavior of the distribution of laminar lengths is
important statistical characterizer of spatiotemporal interm
tency@4,3#. The length of the laminar bursts, i.e., the numb
of consecutive sites that follow periodic behavior before b
ing interrupted by chaotic bursts is calculated. The distrib
tion for this length shows a power-law behavior withP( l )
' l 2z, whereP( l ) is the probability for a laminar length o
size l ~see Figs. 3 and 4!. This shows the presence of long
range spatial correlations in the lattice.

We observe that power-law scaling is seen in extens
regions of the parameter space. Four distinct types of sca
behavior were seen in the parameter space. We plot lnP(l)

r

0-5
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ASHUTOSH SHARMA AND NEELIMA GUPTE PHYSICAL REVIEW E66, 036210 ~2002!
FIG. 3. ~a! shows the plot of lnP(l) vs ln l at the parameter
valuesg51.99, e50.48 for 10 000 lattice sites~plus signs! and
5000 lattice sites~crosses!, each iterated for 100 000 iterates. A
initial transient of 5000 iterates has been discarded. A straight
of slope21.1 can be fitted to the data. An average over 25 rand
initial conditions has been taken. The laminar lengthsl are in units
of lattice spacing here and in all subsequent graphs.~b! shows
ln P(l) vs ln l at the parameter valuesg50.66, e50.39 for 10 000
lattice sites~plus signs! and for 5000 lattice sites~asterisks! each
iterated for 100 000 iterates for ten initial conditions. An initi
transient of 10 000 iterates has been discarded. A straight lin
slope22.0 can be fitted to the data up to the third decade.
03621
e
m
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FIG. 4. ~a! shows a plot of lnP(l) vs ln l at the parameter value
g51.0, e50.64 for 10 000 lattice sites~plus signs! and 5000 lattice
sites~crosses! each iterated for 100 000 iterates for 25 initial co
ditions. An initial transient of 10 000 iterates has been discarded
straight line of slope21.33 can be fitted to the data up to the thi
decade.~b! shows lnP(l) vs ln l at the parameter valuesg51.0 e
50.425 for 10 000 lattice sites~plus signs! and for 5000 lattice sites
~crosses! each iterated for 100 000 iterates for 25 initial condition
An initial transient of 10 000 iterates has been discarded. A stra
line of slope21.66 can be fitted to the initial part of the data.
0-6
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SPATIOTEMPORAL INTERMITTENCY AND SCALING . . . PHYSICAL REVIEW E66, 036210 ~2002!
against lnl for four typical values in the parameter space
Figs. 3~a! and 3~b! and 4~a! and 4~b!. It is clear that four
distinct exponents can be seen. Each figure shows plot
ln P(l) versus lnl for a distinct parameter value, for two la
tice sizes 5000 and 10 000 as indicated in the figure capti
~A constant value has been added to the data of lattice
10 000 to shift it upwards.! We find that a good fit to the dat
is obtained for the valuesz151.1, z251.33, z351.66, and
zF52.0. The power lawsz1 andzF can be seen in Figs. 3~a!
and 3~b!, whereas power lawsz2 and z3 are seen in Figs
4~a! and 4~b!. We note that the power lawszF , z2, andz3

are only seen up to the third or fourth decade and the di
bution falls off faster than a power law thereafter, where
the power lawz1 maintains it is behavior over a much long
stretch.

An indication of the regions where power laws are se
can be obtained by looking at the bifurcation lines where
synchronized fixed points become unstable as plotted in
2 and in the neighborhood of their intersection points.
observe four distinct ranges for the exponents. These arz1
which lies between 0.9 and 1.15,z2 which takes values be
tween 1.2 and 1.35,z3 which lies between 1.5 and 1.75, an
zF which takes values between 1.9 and 2.2.

It is clear from Fig. 3~a! that theP( l ) for the exponentz1
shows power-law behavior over a range ofl values from 1 to
a few hundred lattice sites whereas theP( l ) for the exponent
zF @Fig. 3~b!# exhibits power-law behavior overl values
ranging from 1 to a few decades. The difference between
two types of behavior can also be seen in the space-
plots of Fig. 1. It is interesting to note that the power lawz1
is seen in the neighborhood of the codimension-two po
A–E whereas the exponentzF is seen in the neighborhood o
the codimension-two pointF. As can be seen from the spac
time plots, the laminarity for the power lawz1 can be
checked to very high accuracy, and has been checked t
accuracy of 1025 for these plots. However, the laminarity i
the neighborhood of the power lawzF is checked to the
value 1021 due to the presence of large variations that c
again be seen on the space-time plots. Thus the spatial
relations are far stronger in the vicinity of thez1 points than
in the vicinity of thezF points.

A similar phenomenon is seen even in the case of
exponents shown in Fig. 4. In the case of Fig. 4~a!, the z2
exponent is a sustained power law over a somewhat la
range ofl values than the power lawz3 seen in Fig. 4~b!. We
note that the scaling exponentsz2 andz3 can be regarded a
cross-over exponents as the behavior crosses over
power-law to exponential behavior. The exponentz2 is seen
along line 2 where there are many codimension-two inters
tions so that the scaling behavior isz1 in the neighborhood
of the tangent-period-doubling points along the curve, mo
away fromz1 to the valuez2, and comes back toz1 as the
next codimension-two point is encountered. However,
valuez3 is encountered along line 6 when the scaling beh
ior moves away fromz1 to exponential fall off. We show the
exponential fall off in Figs. 5~a! and 5~b!. Figure 5~a! is a
plot of P( l ) againstl and Fig. 5~b! plots lnP(l) againstl. The
behavior seen can be fitted by the exponential function~dot-
03621
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ted line! given in the figure caption. Since the exponentsz2
and z3 are crossover exponents, it is unsurprising that
power law is sustained over just a few decades. Again,
exponentz3, which is the exponent for cross-over to exp
nential behavior, shows power-law behavior over a sho
range ofl -s than z2 which shows sustained power-law b
havior over a slightly larger range ofl values due to its
proximity to bifurcation points wherez1 behavior, which
corresponds to stronger spatial correlations, is seen. We

FIG. 5. ~a! shows the plot ofP( l ) vs l at the parameter value
g50.25, e50.45 for 10 000 lattice sites iterated for 100 000 ite
ates for five initial conditions. The function fitted isf (x)
55.8 exp(20.36x). ~b! shows the plot of lnP(l) vs l for the same
data.
0-7
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FIG. 6. Plots of lnP(l) vs ln l at two parameter values. The upper set~which corresponds to the power lawz1) is for the parameters
g51.99, e50.48 for 10 000 lattice sites~plus signs!, 5000 lattice sites~crosses!, and 2000 lattice sites~asterisks!. Each lattice has been
iterated for 100 000 iterates after discarding 10 000 iterates for 25 initial conditions. The lower set~those for the power lawzF) is for the
parameter valuesg50.66, e50.39 for 10 000 lattice sites~circles!, 5000 lattice sites~hollow boxes!, and 2000 lattice sites~filled boxes!.
Each lattice has been iterated for 100 000 iterates after discarding 10 000 iterates for ten initial conditions.
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note that while the exponentsz2 and z3 appear to indicate
crossover behavior, they still fall in distinct ranges. No s
tained spatiotemporal intermittency is seen along other lin

The phenomena discussed above have been observe
lattices of different sizes. We show the power lawz1 for
three different lattice sizes (10 000 lattice sites, 5000 lat
sites, and 2000 lattice sites! in Fig. 6. It is clear that data fo
different lattice sizes fall on the same curve. The long
laminar lengths seen are of the order of 10% of the lat
size so that finite size effects are not seen. Even in the c
of the scaling lawzF , where the power-law behavior is see
over a much shorter range ofl values, the data for differen
sizes of lattice fall on the same curve as can be seen in
6. Figure 7 shows the power lawsz1 for 50 000 and 100 000
iterates andzF for 100 000 and 150 000 iterates for a latti
of 10 000 sites. The power law is the same in the linear p
03621
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of the curves. All the results above are obtained for bifur
tions from the synchronized fixed points. Bifurcations fro
higher spatial temporal periods can also give rise to s
tiotemporal or spatial/temporal intermittency in many ad
tional regions of parameter space. This question is prese
under investigation.

IV. DISCUSSION AND CONCLUSIONS

We have shown that both spatial and spatiotemporal in
mittency can arise in a inhomogeneous coupled map latt
The phenomenon of intermittency is more widespread in
homogeneous lattices than in the case of homogeneous
tices. The presence of pure spatial intermittency accom
nied by temporally periodic behavior is an unusual feat
that arises in the case of the inhomogeneous system u
0-8
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study@23#. The intermittency arises as a result of bifurcatio
of codimension one and two. Such bifurcations are also
interest in the case of other spatially extended systems@28#.

The distributions of laminar lengths seen exhibit four d
tinct kinds of power-law scaling behavior characterized
exponents which fall in four distinct ranges. It is interesti

FIG. 7. Plot of lnP(l) vs ln l at the parameter valuesg51.99,
e50.48 for 10 000 lattice sites, 50 000 iterates~plus signs! and
100 000 iterates~crosses! for 25 initial conditions each. The plo
also shows lnP(l) vs lnl at the parameter valuesg50.66, e
50.39 for 10 000 lattice sites, 100 000 iterates~boxes! and for
150 000 iterates~asterisks! for ten initial conditions. An initial tran-
sient of 10 000 iterates has been discarded.
l,

t-

03621
s
f

-
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to note that exponents similar to those observed by us h
been seen in quasi-one-dimensional fluid experiments.
exponent that falls in the same range as our exponentzF has
been observed in the case of Rayleigh-Benard convectio
an annulus@11#, whereas exponents that fall in the sam
range asz2 have been seen for convection in a channel a
for the Taylor-Dean experiment@14,13#. It would also be
interesting to see if exponents similar to ours are seen in
case of fluid systems with inhomogeneities. A situation
which there is a regular array of inhomogeneities as in
model could be one where an array of heating eleme
maintained at a desired profile of temperatures is introdu
in a fluid. The inhomogeneity could also be in the form
obstacles to the fluid flow or the existence of a vortex latti

The plot of bifurcation curves in parameter space for
furcations from synchronized fixed point solutions forms
rough phase diagram which indicates regions where s
tiotemporal intermittency can be found. Spatiotemporal
termittency can be found in the vicinity of the bifurcatio
curves and in the vicinity of the intersections of these curv
Secondary bifurcations and bifurcations from higher per
solutions can provide further structure to this phase diagr
The analogy of the transition to spatiotemporal intermitten
with second-order phase transitions is being explored furt

The conjecture that the transition to spatiotemporal int
mittency falls in the same universality class as directed p
colation @17# has been the central issue in a long debate
the literature@4,3,18,19#. Much work on coupled map lat
tices has shown that this conjecture is very hard to verify d
to the presence of long-range correlations. Our model co
be useful for comparisons of the critical behavior of sp
tiotemporal intermittency with those of directed percolati
and in discussions of universality properties. We hope
analysis will be useful for the understanding of intermitte
phenomena arising in other spatially extended systems
well, and in discussions of their genericity and universali
ro-
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